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Text data for social sciences questions
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What is the nature of online
censorship in China?

King et al., American Political
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Manual analysis is costly at scale
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Natural language processing (NLP)
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Focus of today’s talk

Corpus-Level Evaluation for Event QA:
The IndiaPoliceEvents Corpus Covering the 2002 Gujarat Violence

Andrew Halterman*
Massachusetts Institute of Technology
ahalt@mit.edu

Sheikh Muhammad Sarwar*
University of Massachusetts Amherst
smsarwar@cs.umass.edu

Abstract

Automated event extraction in social science
applications often requires corpus-level evalu-
ations: for example, aggregating text predic-
tions across metadata and unbiased estimates
of recall. We combine corpus-level evalu-
ation requirements with a real-world, social
science setting and introduce the INDIAPO-
LICEEVENTS corpus—all 21,391 sentences
from 1,257 English-language Times of India
articles about events in the state of Gujarat
during March 2002. Our trained annotators
read and label every document for mentions
of police activity events, allowing for unbi-
ased recall evaluations. In contrast to other
datasets with structured event representations,
we gather annotations by posing natural ques-
tions, and evaluate off-the-shelf models for
three different tasks: sentence classification,
document ranking, and temporal aggregation
of target events. We present baseline results
from zero-shot BERT-based models fine-tuned
on natural language inference and passage re-
trieval tasks. Our novel corpus-level eval-
uations and annotation approach can guide
creation of similar social-science-oriented re-
sources in the future.

1 Introduction

Understanding the actions taken by political actors
is at the heart of political science research: How
do actors respond to contested elections (Daxecker
et al., 2019)? How many people attend protests
(Chenoweth and Lewis, 2013)? Which religious
groups are engaged in violence (Brathwaite and
Park, 2018)? Why do some governments try to pre-
vent anti-minority riots while others do not (Wilkin-
son, 2006)? In the absence of official records, so-
cial scientists often turn to news data to extract the
actions of actors and surrounding events. These

* Indicates joint first-authorship.
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Figure 1: Motivation (A-B) and procedures (B-C) for
this paper: A. Social scientists often use text data to an-
swer substantive questions about temporal aggregates.
B. To answer these questions, domain experts use natu-
ral language to define ic event classes of interest.
C. Our INDIAPOLICEEVENTS dataset: Humans anno-
tate every sentence in the corpus in order to evaluate
whether a system achieves full recall of relevant events.
In production, computational models run B’s queries
to classify or rank sentences or documents, which are
aggregated to answer A.

news-based event datasets are often constructed
by hand, requiring large investments of time and
money and limiting the number of researchers who
can undertake data collection efforts.

Automated extraction of political events and ac-
tors is already prominent in social science (Schrodt
et al., 1994; King and Lowe, 2003; Hanna, 2014;
Hammond and Weidmann, 2014; Boschee et al.,
2015; Beieler et al., 2016; Osorio and Reyes, 2017)
and is increasingly promising given recent gains in
information extraction (IE), the automatic conver-
sion of unstructured text to structured datasets (Gr-
ishman, 1997; McCallum, 2005; Grishman, 2019).
While social scientists and IE researchers have over-
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Political science-motivated research questions

Andy Halterman
Political Science

Q: Does variation in party Challenges Use NLP to automate
control of state government a e No official records. e extracting events
affect whether police failed Only news articles.

to intervene in communal e Reading documents

violence? manually is costly.

Violence in Gujarat, India 2002
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e.g. “Over time, when did police fail to act?”
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Train fire kills Hindu Pilgrims, Feb. 27, 2002
Photo Credit: New York Times

Media bias outside the

scope of this talk

Katie Keith Automated Event Extraction



Counterdata is the grassroots collection
of missing datasets
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Events

\Who did what to whom?

Police killed [PERSON].
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Even simple event types present challenges

Police killed PERSON.

Police officers spotted the butt of a handgun in Alton
Sterling’s front pocket and saw him reach for the weapon
before opening fire, according to a Baton Rouge Police
Department search warrant filed Monday that offers the
first police account of the events leading up to his fatal

shooting.

Keith et al. Identifying civilians killed by police with distantly supervised entity-event extraction. EMNLPE, 2017.
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https://arxiv.org/pdf/1707.07086.pdf

Even simple event types present challenges

Police killed PERSON.

long-range dependencies

Police officers spotted the butt of a handgun in Alton
Sterling’s front pocket and saw him reach for the weapon
before opening fire, according to a Baton Rouge Police
Department search warrant filed Monday that offers the
first police account of the events leading up to his fatal

shooting.
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Even simple event types present challenges

Police killed PERSON.

long-range dependencies

Police officers spotted the butt of a handgun in Alton
Sterling’s front pocket and saw him reach for the weapon
before opening fire, according to a Baton Rouge Police
Department search warrant filed Monday that offers the
first police account of the events leading up to his fatal

shooting.

coreference
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Even simple event types present challenges

Police killed PERSON.

long-range dependencies

Police officers spotted the butt of a handgun in Alton
Sterling’s front pocket and saw him reach for the weapon
before opening fire, according to a Baton Rouge Police
Department search warrant filed Monday that offers the
first police account of the events leading up to his fatal
shooting.

event

coreference
coreference
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Events

\Who did what to whom?

Hovy et al. Abend and Rapport.

. Workshop
on EVENTS, 2013. .ACL, 2017.

Automated event In the social sciences iIn\@mputer science
extraction has a large
academic literature... Schrodt et al., 1994; King and Lowe, 2003; Grishntan, 1997; McCallum, 2005; Aguilar etfal.,

Hanna, 2014; Hammond and Weidmann, 2014;  2014; Hovy et al., 2013; Levy et al., 2017; Abend
Boschee et al., 2015; Beieler et al., 2016; Osorio and Rappoport, 2017; Grishman, 2019; Liu et al.,
and Reyes, 2017 2020; Du and Cardie, 2020
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Approaches to Automated Event Extraction

L Machine
Deterministic .
. learning
pattern matching
Methods Supervised
: : Zero-shot
Keywords Rules over syntactic machine transfer
dependency parses learning learning
Domain Generalization

knowledge

Mitchell. The Need for Biases in Learning Generalizations. 1980.
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Deterministic Keyword Matching

Input: sentences

PERSON was fatally shot Officers reported PERSON
by police. was Killed in a car accident.

NS

Method: Agents Event triggers
officers, police, cops,

Kill, killing,
shoot, shooting,
murder, homicide ...

Keyword matching troopers, deputy, ...

Issue: many
false positives

Output: Classification (low precision)

Yes
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Deterministic Syntax Matching

Input: automatically infer dependency parse trees over sentences

nsubj:pass punct —punct
/ aux:pass obl § {as&t
¢ - csubj:pass
NN (VBD] 2vmoaNVBNY (IN] C% RS " \vBDY "I ~NN]  (VBD' """ \vBN m{m’/_[m“”“'””“"&m A
—— A o — —  ~ — . e —

RB
p— g —————— = - e : e —
PERSON was fata”y shot by police _ Officers reported PERSON was killed in a car accident .

N\ /

Method: Rules over dependency paths

Kill, killing, officers, police,
shoot, shooting, cops, troopers,
murder, homicide ...

/ Issue: Difficult for
o a domain expert to
Output: Classification Yes N list all possible

rules (low recall)

Chen and Manning, EMNLP, 2014; Nivre et al. LREC, 2016; Keith et. al, NAACL, 2018
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Approaches to Automated Event Extraction

Deterministic Machine
pattern matching learning
Methods Supervised
. . Zero-shot
Keywords Rules over syntactic machine transfer
dependency parses learning learning
Domain Generalization
knowledge

Mitchell. The Need for Biases in Learning Generalizations. 1980.
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Supervised Machine Learning

1. Gather training data Police killed PERSON.
.
2. Humans label training data Yes/No

® |ogistic regression with bag of

3. Train model: statistical pattern words features
matching between inputs and labels ® convolutional neural networks

initialized with pre-trained word
embeddings

PERSON died in a
police flomicide

4. Inference: (generalization) apply
trained model on unseen inputs

Yes
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copy it. Brenden Lake
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Pre-training with large-scale language models

Huge performance gains in Self-supervision: Masked
recent years with large-scale language modeling (MLM)
language models trained on objective function

scrapes of the web
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https://towardsdatascience.com/understanding-masked-language-models-mlm-and-causal-language-models-clm-in-nlp-194c15f56a5

Zero-Shot Transfer Learning

1. Pre-train large-scale language model
2. Fine-tune on a task with labeled data
3. Apply trained model zero-shot to our dataset
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2. Fine-tuning on a task with labeled data

. Class
Entailment Label

Neutral
Contradiction

Sentence 1 Sentence 2
A soccer game with Some men are playing
multiple males playing. a sport.

Bowman et al. ACL, 2015
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3. Apply trained model zero-shot to our dataset

. Class
Entailment Label

Neutral
Contradiction

Sentence 1 Sentence 2

Police killed e Yesterday, 97 died in
someone. BUIr BN police firing.
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Approaches to Automated Event Extraction

L Machine
Deterministic .
. learning
pattern matching
Methods Supervised
: : Zero-shot
Keywords Rules over syntactic machine transfer
dependency parses learning learning
Domain Generalization

knowledge

Mitchell. The Need for Biases in Learning Generalizations. 1980.
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What was our original problem again?
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International-relations motivated research questions

Andy Halterman
Political Science

Q: Does variation in party Challenges Use NLP to
control of state government e No official records. automate

affect whether police failed Only news articles. extracting events
to intervene in communal e Reading documents

violence? manually is costly.

Violence in Gujarat, India 2002

e.g. “Over time, when did police fail to act?”

count 1
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Train fire kills Hindu Pilgrims, Feb. 27, 2002
Photo Credit: New York Times
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Novel dataset created for empirical evaluation

~~~~~~~~~~~~~~ Annotation interface
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b i el For i N N | Crows n Fesive Mood sticks and other weapons. In response, the police

M oo Sl T S e rushed to the spot to quell the violence and arrested

RSE s e ™ | e ten people. Two people died due to police firing
TR | e FEt] nd another three were injured from the
e Wl =y S PPy e R e
s SRR B PO R . i Rt an shooting. An officer was detained due to unethical
e i@i&ﬁ% riendship Wi rilain
v e 1 g conduct.
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Did police kill someone? 1

° TlmeS Of Indla [] Did police arrest someone?
o F|Iter to March 2002 and “Ayod ha” OR [] Did police fail to act or not intervene?
“GUjarat” Did police use other force or violence?

® Results in 1,257 articles, 21,391 sentences
e Every sentence annotated with 2 annotators
+ adjudication round

[ ] Did police say or do something else (not included above)?

Dataset publicly available

https://github.com/slanglab/IndiaPoliceEvents
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Evaluation highlights
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Gold Standard Annotations
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Evaluation highlights

1.00 Event Class
A. ® KL
0.75 ® A @® ARREST
Temporal N ® FAL
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correlation between '
o @® ANY ACTION
human gold-
standard and model 0.25
Model
@® Keyword-Sent
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Zero-shot language
Sentence-level model F1 model previously
mentioned
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Manual error analysis

“[...] scores of people have been
/ : ST killed in rural Gujarat due to police

l \ failure...

: : » “Police said that two persons had
Model assigns high positive been killed [...]"

probability to sentences that

should be classified as
negatives
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Please read our paper for more details!

Corpus-Level Evaluation for Event QA:
The IndiaPoliceEvents Corpus Covering the 2002 Gujarat Violence

Andrew Halterman*
Massachusetts Institute of Technology
ahalt@mit.edu

Sheikh Muhammad Sarwar*
University of Massachusetts Amherst
smsarwar@cs.umass.edu

Abstract

Automated event extraction in social science
applications often requires corpus-level evalu-
ations: for example, aggregating text predic-
tions across metadata and unbiased estimates
of recall. We combine corpus-level evalu-
ation requirements with a real-world, social
science setting and introduce the INDIAPO-
LICEEVENTS corpus—all 21,391 sentences
from 1,257 English-language Times of India
articles about events in the state of Gujarat
during March 2002. Our trained annotators
read and label every document for mentions
of police activity events, allowing for unbi-
ased recall evaluations. In contrast to other
datasets with structured event representations,
we gather annotations by posing natural ques-
tions, and evaluate off-the-shelf models for
three different tasks: sentence classification,
document ranking, and temporal aggregation
of target events. We present baseline results
from zero-shot BERT-based models fine-tuned
on natural language inference and passage re-
trieval tasks. Our novel corpus-level eval-
uations and annotation approach can guide
creation of similar social-science-oriented re-
sources in the future.

1 Introduction

Understanding the actions taken by political actors
is at the heart of political science research: How
do actors respond to contested elections (Daxecker
et al., 2019)? How many people attend protests
(Chenoweth and Lewis, 2013)? Which religious
groups are engaged in violence (Brathwaite and
Park, 2018)? Why do some governments try to pre-
vent anti-minority riots while others do not (Wilkin-
son, 2006)? In the absence of official records, so-
cial scientists often turn to news data to extract the
actions of actors and surrounding events. These

* Indicates joint first-authorship.

Katherine A. Keith*
University of Massachusetts Amherst
kkeith@cs.umass.edu

Brendan O’Connor
University of Massachusetts Amherst
brenocon@cs.umass.edu
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Figure 1: Motivation (A-B) and procedures (B-C) for
this paper: A. Social scientists often use text data to an-
swer substantive questions about temporal aggregates.
B. To answer these questions, domain experts use natu-
ral language to define ic event classes of interest.
C. Our INDIAPOLICEEVENTS dataset: Humans anno-
tate every sentence in the corpus in order to evaluate
whether a system achieves full recall of relevant events.
In production, computational models run B’s queries
to classify or rank sentences or documents, which are
aggregated to answer A.

news-based event datasets are often constructed
by hand, requiring large investments of time and
money and limiting the number of researchers who
can undertake data collection efforts.

Automated extraction of political events and ac-
tors is already prominent in social science (Schrodt
et al., 1994; King and Lowe, 2003; Hanna, 2014;
Hammond and Weidmann, 2014; Boschee et al.,
2015; Beieler et al., 2016; Osorio and Reyes, 2017)
and is increasingly promising given recent gains in
information extraction (IE), the automatic conver-
sion of unstructured text to structured datasets (Gr-
ishman, 1997; McCallum, 2005; Grishman, 2019).
While social scientists and IE researchers have over-
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