Social Data Science with Text

Katherine Keith
PhD Candidate
College of Information and Computer Sciences
University of Massachusetts Amherst
Social Data Science with Text
Social Data Science with Text
Social Data Science with Text

vs.

Machine Learning
Natural Language Processing
Interdisciplinary collaboration
Bloomberg Data Science Fellow 2019-2021
Bloomberg Research Intern 2018, 2020

Interdisciplinary collaboration
Beliefs

Language

Economic Signal
Analyst’s beliefs about a firm

Beliefs

Earnings call transcripts

Language

Economic Signal

Analysts’ price target before and after call

(K Keith and Stent, “Modeling financial analysts’ decision making via the pragmatics and semantics of earnings calls." ACL, 2019)
Belief that policy is driving economic uncertainty

News reports

Language

Stock volatility index

Economic Signal

My research philosophy: *Social data science with text* requires a rich symbiosis between *domain applications* and *computational methods*.
My Research Agenda

Social applications

Linking language to economic signals
- Keith and Stent, ACL 2017
- Keith et al., NLP + CSS Wrksp. 2020

Collecting counterdata from news
- Keith et al., EMNLP 2017

Computational methods

Ambiguity in language
- Keith et al., NAACL 2018

Quantifying uncertainty
- Keith and O’Connor, EMNLP 2018
- Keith et al., NLP + CSS Wrksp. 2020

Limited labeled data
- Keith et al., EMNLP 2017

Text-based causal inference
- Keith et al., ACL 2020
My Research Agenda

Social applications

- Linking language to economic signals
 - Keith and Stent, ACL 2017
 - Keith et al., NLP + CSS Wrksp. 2020
- Collecting counterdata from news
 - Keith et al., EMNLP 2017

Computational methods

- Ambiguity in language
 - Keith et al., NAACL 2018
- Quantifying uncertainty
 - Keith and O'Connor, EMNLP 2018
 - Keith et al., NLP + CSS Wrksp. 2020
- Limited labeled data
 - Keith et al., EMNLP 2017
- Text-based causal inference
 - Keith et al., ACL 2020

Questions?
How can **data science** contribute to **social impact**?
How can **data science** contribute to **social impact**?

How can we improve outcomes in the world?
How can **data science** contribute to **social impact**?

How can we **improve outcomes** in the world?

values +
measurement
How can we *improve outcomes* in the world?
value:
police should not kill civilians

How can we improve outcomes in the world?

Source: Times Magazine
value:
police should not kill civilians

How can we improve outcomes in the world?

measurement:

police policies \rightarrow number of civilians killed by police
value:
police should not kill civilians

How can we improve outcomes in the world?

measurement:

police policies

number of civilians killed by police

???
U.S. federal government systematically undercounts or fails to count police fatalities

• **2013**: Obama signs *Death in Custody Reporting Act (DCRA)*
 • Requires police departments to report every time a citizen dies in custody

• **2019**: FBI begins *National Use of Force Data Collection*
 • Local law enforcement agencies are not required to participate and the data is not yet public
Counterdata: grassroots collection of missing datasets

(D’Ignazio and Klein, Data Feminism, 2020)
Counterdata: police fatalities from news reports

Measurement:

- Number of civilians killed by police

???
Counterdata: police fatalities from news reports

measurement:

number of civilians killed by police

Approach 1: Manual

Issue: Cost of human time and emotional strain

Approach 2: Automated
ML + NLP

(Keith et al., EMNLP 2017)
Why is automatically detecting police fatality events hard?
Police killed PERSON.
Police killed PERSON.

Police officers spotted the butt of a handgun in Alton Sterling’s front pocket and saw him reach for the weapon before opening fire, according to a Baton Rouge Police Department search warrant filed Monday that offers the first police account of the events leading up to his fatal shooting.
Police officers spotted the butt of a handgun in Alton Sterling’s front pocket and saw him reach for the weapon before opening fire, according to a Baton Rouge Police Department search warrant filed Monday that offers the first police account of the events leading up to his fatal shooting.

long-range dependencies
Police killed PERSON.

Police officers spotted the butt of a handgun in Alton Sterling’s front pocket and saw him reach for the weapon before opening fire, according to a Baton Rouge Police Department search warrant filed Monday that offers the first police account of the events leading up to his fatal shooting.
Police officers spotted the butt of a handgun in Alton Sterling’s front pocket and saw him reach for the weapon before opening fire, according to a Baton Rouge Police Department search warrant filed Monday that offers the first police account of the events leading up to his fatal shooting.

long-range dependencies

coreference

event coreference
Automatically detecting police fatality events

Domain knowledge vs. Machine Learning
Automatically detecting police fatality events

Domain knowledge vs. Machine Learning
Domain Knowledge: Keyword Matching

Input: sentences

PERSON was **fatally shot** by police.

Officers reported PERSON was **killed** in a car accident.

Keyword matching

Classification

Yes

Yes

No

No

Issue: many false positives (low precision)
Domain Knowledge: Syntactic Dependency Parsing

Input: automatically infer dependency parse trees over sentences

Rules over dependency paths

Classification

Yes

No

Issue: Difficult for a domain expert to list all possible rules (low recall)

(e.g. Chen and Manning, EMNLP, 2014; Nivre et al. LREC, 2016; Keith et. al, NAACL, 2018)
Automatically detecting police fatality events

Domain knowledge vs. Machine Learning
Supervised Machine Learning

1. **Gather** input data

2. **Label** input data

3. **Train model:** statistical pattern matching between inputs and labels

 - **Our work:**
 - *logistic regression* with bag of words features
 - *convolutional neural networks* initialized with pre-trained word embeddings

4. **Inference:** (generalization) apply trained model on unseen inputs
Need to **evaluate tradeoffs** for methods of event extraction

Event extraction methods can be used to collect **counterdata**

Without these **measurements**, some questions can be nearly impossible to answer.

How can we **improve outcomes** in the world?
My Research Agenda

Questions?

Social applications

- Linking language to economic signals
 - Keith and Stent, ACL 2017
 - Keith et al., NLP + CSS Wrksp. 2020
- Collecting counterdata from news
 - Keith et al., EMNLP 2017

Computational methods

- Ambiguity in language
 - Keith et al., NAACL 2018
- Quantifying uncertainty
 - Keith and O’Connor, EMNLP 2018
 - Keith et al., NLP + CSS Wrksp. 2020
- Limited labeled data
 - Keith et al., EMNLP 2017
- Text-based causal inference
 - Keith et al., ACL 2020
Supervised Machine Learning

1. **Gather** input data

2. **Label** input data

3. **Train model:** learn pattern matching between inputs and labels

4. **Inference:** (generalization) apply trained model on unseen inputs

Police killed PERSON.

Yes/No

PERSON died in a police homicide.

Yes
Distant supervision
(Craven and Kumlien, 1999; Mintz et al., 2009)

Requirement: knowledge in an external database that is not currently aligned with text (e.g. Fatal Encounters)
1. Impute positive labels from an external database

(e.g. Fatal Encounters)

John Doe

Jane Public

2. Use those labels to train a model

John Doe was killed by police.

Police fatally shot Jane Public.
Distant supervision
(Craven and Kumlien, 1999; Mintz et al., 2009)

1. Impute positive labels from an **external database**

 - John Doe
 - Jane Public

 (e.g. Fatal Encounters)

2. Use those labels to train a model

 - John Doe was killed by police.
 - Police fatally shot Jane Public.
 - Police were present during protests over Jane Public.

Issue: Many false positives (~30%)
For each sentence i

- e_i: Entity (person’s name)
- $y_{e_i} \in \{0, 1\}$: Entity label
- $x_{\mathcal{M}(e_i)}$: Set of all sentences with entity
- $z_i \in \{0, 1\}$: Label of whether the sentence indicates a police fatality event

(Keith et al., EMNLP 2017)
Latent disjunction model
(Keith et al., EMNLP 2017)

For each sentence i

- e_i
 Entity (person’s name)
- $y_{ei} \in \{0, 1\}$
 Entity label
- $x_M(e_i)$
 Set of all sentences with entity
- $z_i \in \{0, 1\}$
 Label of whether the sentence indicates a police fatality event

Key takeaway: Transforms sentences labels from binary (0 or 1) to a probability

E-Step:

$$q(z_i) := P(z_i | x_M(e_i), y_{ei})$$

M-Step:

Iterate until convergence

Builds in assumption that *at least one sentence* must be a positive per entity.

Parameters for sentence classifier
Empirical evaluation
Police fatality data

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Docs.</td>
<td>793,010</td>
<td>317,345</td>
</tr>
<tr>
<td>Total Entities</td>
<td>49,203</td>
<td>24,550</td>
</tr>
</tbody>
</table>

Data publicly available: http://slanglab.cs.umass.edu/PoliceKillingsExtraction/
Distant supervision vs. Latent disjunction model

- Cheaper than standard supervision
- **Empirical results:** Improves entity-level F1 by 18% on the test set
- Reduces distantly-labeled false positives
Logan Clarke was shot by a campus police officer after waving kitchen knives at fellow students outside the cafeteria at Hug High School in Reno, Nevada, on December 7.

Model prediction: Yes
True value: No
Logan Clarke was shot by a campus police officer after waving kitchen knives at fellow students outside the cafeteria at Hug High School in Reno, Nevada, on December 7.

Model prediction: Yes
True value: No
• Ongoing work: Fatal Encounters used our monitoring system for weekly updates
• Dozens of cases and updates found
My ongoing and future work on supporting *counterdata* collection
My ongoing and future work on supporting *counterdata* collection

Using news articles to automatically detect police actions during communal violence in India

Andrew Halterman
Political Science, MIT

Sheikh Sarwar
Computer Science, UMass Amherst
My ongoing and future work on supporting *counterdata* collection

Using news articles to automatically detect police actions during communal violence in India

Building a broad set of NLP tools to augment human *counterdata* collection

e.g. Maria Salguero manually maps *femicides* in Mexico

https://feminicidiosmx.crowdmap.com

Katherine Keith

Social Data Science with Text
We can reduce the **annotation burden** via methods such as distant supervision and its variants. Could help augment other counterdata collection efforts that are currently done manually.
My Research Agenda

Social applications

- Linking language to economic signals
 - Keith and Stent, ACL 2017
 - Keith et al., NLP + CSS Wrksp. 2020
- Collecting *counterdata* from news
 - Keith et al., EMNLP 2017

Computational methods

- Ambiguity in language
 - Keith et al., NAACL 2018
- Quantifying uncertainty
 - Keith and O’Connor, EMNLP 2018
 - Keith et al., NLP + CSS Wrksp. 2020
- Limited labeled data
 - Keith et al., EMNLP 2017
- Text-based causal inference
 - Keith et al., ACL 2020

Questions?
How can **data science** contribute to **social impact**?

How can we improve outcomes in the world?
How can data science contribute to social impact?

How can we improve outcomes in the world?

values + measurement
How can **data science** contribute to **social impact**?

How can we improve outcomes in the world? causal
Causality
How can we improve outcomes in the world?
How can we improve outcomes in the world?

For college students, what is the effect of alcohol use on academic success?

(Kiciman et al. Using longitudinal social media analysis to understand the effects of early college alcohol use. ICWSM, 2020)
How can we improve outcomes in the world?

For college students, what is the effect of alcohol use on academic success?

Problem: need to remove confounding bias

Approach 1: Intervention

Approach 2: observational data + statistical adjustment

(Kiciman et al. Using longitudinal social media analysis to understand the effects of early college alcohol use. ICWSM, 2020)
For college students, what is the effect of alcohol use on academic success?

(Kiciman et al. Using longitudinal social media analysis to understand the effects of early college alcohol use. ICWSM, 2020)

Problem: need to remove confounding bias

Approach 1: Intervention

Problem: cannot directly measure confounders

Approach 2: observational data + statistical adjustment

One approach: Use text as a surrogate for confounders

Students’ life experiences

Twitter
How does one use text to adjust for confounding?

Applied researchers:
- gather and categorize applications
- flow-chart of analysts’ decisions

Causal inference researchers working with text data:
- text data vs. other high-dimensional
- human validation of causal adjustments

NLP researchers working with causal inference:
- overview of statistical adjustment methods
- evaluation of causal models
Future work: evaluating text-based causal methods

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictive</td>
<td>Predictive performance (e.g. accuracy) on a held-out test set</td>
</tr>
<tr>
<td>Causal</td>
<td>Estimated vs. true causal effects</td>
</tr>
</tbody>
</table>

Difficult to obtain!
Future work: evaluating text-based causal methods

(A) Constructed observational studies

Randomized

Non-randomized

In other social sciences:
(LaLonde (1986); Shadish et al. (2008); Glynn and Kashin (2013))

(B) Semi-synthetic datasets

With text to remove confounding:
(Johansson et al. 2016; Veitch et al. 2019; Roberts et al. 2020)
Many **open problems** in text-based causal inference

needed to answer

Socially impactful text-based causal questions

Causal evaluation
How can **data science** contribute to **social impact**?

How can we improve outcomes in the world?

causal

values + measurement

(1) Interdisciplinary collaborations

(2) Gathering additional text data sources

(3) Improving computational methods
Thank you to my co-authors!
My Research Agenda

Social applications
- Linking language to economic signals
 - Keith and Stent, ACL 2017
 - Keith et al., NLP + CSS Wrksp. 2020
- Collecting *counterdata* from news
 - Keith et al., EMNLP 2017

Computational methods
- Ambiguity in language
 - Keith et al., NAACL 2018
- Quantifying uncertainty
 - Keith and O’Connor, EMNLP 2018
 - Keith et al., NLP + CSS Wrksp. 2020
- Limited labeled data
 - Keith et al., EMNLP 2017
- Text-based causal inference
 - Keith et al., ACL 2020

Thank you! Questions?