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Motivation

▶ Proximal causal inference (PCI) allows practitioners to
identify the average causal effect (ACE) in the presence
of unmeasured confounding, but essential conditions for
identification are difficult to verify [6].

▶ Researchers have proposed using text data to infer
proxies for confounders [7], but this requires ground-truth
labels for a subset of instances, something that is often
impractical due to privacy concerns.

▶ We propose a new causal inference method that uses
unique instances of pre-treatment text data, infers two
proxies with zero-shot models on the instances, and
applies the proxies in the two-stage linear regression
proximal g-formula [6].

Motivating Example

▶ We want to evaluate the effectiveness of clot busting
medication to treat strokes.

▶ Target of Inference:

ACE = E[Y | do(A = 1)]− E[Y | do(A = 0)]
▶ Problem: (i) Atrial fibrillation (irregular heart rhythms) is

an important confounder that is not recorded in the
structured data. (ii) Atrial fibrillation is an unmeasured
confounder; e.g., we do not have access to atrial
fibrillation status for any individuals in the dataset.

Basics of Proximal Causal Inference
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Figure: Canonical example of a DAG where (P1-P4) are fulfilled.

▶ When two proxies W and Z of the unmeasured
confounder U relative to treatment A, outcome Y , and a
set of baseline confounders C satisfy the following
conditions:

(P1) W ⊥⊥ Z | U,C
(P2) W ⊥⊥ A | U,C
(P3) Z ⊥⊥ Y | A,U,C
(P4) Completeness (intuition): W and Z are predictive of U

and, if they are discrete, W and Z have the same
number or more categories than U has.

The ACE is identified through the proximal g-formula [6].
▶ Throughout this work, we use the two-stage linear

regression estimator for the proximal g-formula [5].
▶ Problem: How can we find two proxies W and Z among

the structured variables that satisfy (P1-P4)?
▶ Answer: We cannot, at least not without a high degree of

domain knowledge.

Designing Text-Based Proxies

▶ Solution: Infer our own proxies from text data using
zero-shot text classifiers, but beware of pitfalls/gotchas.

▶ Gotcha #1: Using text-based inferences directly in
backdoor adjustment. Subfigure (a) does not satisfy the
backdoor criterion.

▶ Gotcha #2: Using post-treatment text. Subfigure (b) fails
(P2) and (P3).

▶ Gotcha #3: Predicting both proxies from the same
instance of text data. Subfigure (c) fails (P1).

▶ Gotcha #4: Using a single zero-shot classifier. In
practice, we find that using two zero-shot classifiers
works better.

▶ Proposition. If W and Z are inferred from two unique
instances of pre-treatment text such that
Tpre

1 ⊥⊥ Tpre
2 | U,C, then these proxies satisfy (P1-P3).

Additionally, if the proxies are predictive of U, i.e.,
Z ̸⊥⊥ U | C and W ̸⊥⊥ U | C, then (P4) holds.

▶ Problem: How can we know that we inferred text-based
proxies that fulfill (P1-P4)?
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Figure: DAGs showing different scenarios for inferring text-based proxies.
Dashed edges with different colors indicate that different zero-shot models
that were used to infer proxies.

Odds Ratio Falsification Heuristic

▶ Solution: We propose a heuristic that warns us
whenever (P1-P4) may be violated by the inferred proxies.

▶ We represent the odds ratio [1] – a measure of
association between two variables – as a single free
parameter, γWZ .C, and estimate it under a linear
parametric model for p(W |Z ,C). Algorithm 1 summarizes
our procedure.

Fully Synthetic Experiments

Pipeline (γCI low
WZ .C , γ

CI high
WZ .C ) Est. ACE Conf. Interval (CI)

P1M (1.35,1.42)✓ 1.304 (1.209,1.394)
P1M, same (1016,1016) 1.430 (1.405,1.495)
P2M (1.82,1.94)✓ 1.343 (1.273,1.425)
P2M, same (7.9,8.41) 1.407 (1.376,1.479)

Table: Fully synthetic results with the true ACE equal to 1.3. Here, ✓
distinguishes settings that passed the odds ratio falsification heuristic from
those that failed it. Corresponding to Gotcha #3, “same” means we use
the same instance of synthetic text data to infer proxies. Proximal-1-Model
(P1M) uses one zero-shot classifier for inference, and Proximal-2-Models
(P2M) uses two zero-shot classifiers. We set γlow=1 and γhigh=2.

▶ As expected, both P1M and P2M yield valid inferences
under synthetic, ideal conditions.

Semi-Synthetic Experiments

▶ We generate semi-synthetic data from the MIMIC-III
dataset [4] and use Echocardiogram, Radiology, and
Nursing notes to infer proxies with instruction-tuned large
language models Flan-T5 [2] and OLMo [3].

▶ Corresponding to Gotcha #1, we compare our text-based
proximal causal inference estimators to using one of the
inferred proxies directly in backdoor adjustment.

▶ Our odds ratio falsification heuristic correctly identifies
invalid proxies, and we find that P2M is more likely to
generate valid proxies in practice.

Figure: Estimates and bootstrap confidence intervals for the ACE when
the unmeasured confounder is coronary atherosclerosis of the native
coronary artery (A-Sis) and congestive heart failure (Heart). Blue and red
distinguish passing and failing the odds ratio heuristic, respectively. We
set γlow = 1 and γhigh = 2.

Future Work
▶ How can we integrate non-linear proximal estimation?
▶ Can we extend our semi-synthetic studies to social

science settings such as social media and education?
▶ Can we incorporate categorical U, W , and Z?
▶ What is the efficacy of using soft probabilistic outputs

from the zero-shot classifiers?
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