Text and Causal Estimation

Text as causal confounders and mediators

Katherine A. Keith March 28, 2022

Georgia Tech, CS 6471: Computational Social Science

How does COVID-19 vaccination affect the severity of COVID-19 (when contracted)?

Katherine Keith

This is a causal question!

Intervention (Treatment)

How does <u>COVID-19 vaccination</u> affect the severity of COVID-19 (when contracted)?

This is a causal question!

Intervention (Treatment)

How does <u>COVID-19 vaccination</u> affect the <u>severity</u> of COVID-19 (when contracted)?

Outcome

General causal set-up

Slide credit: Emaad Manzoor

Katherine Keith

Causal Estimand: Individual Treatment Effect (ITE)

 $Y^{a=0}$

Outcome had individual been given placebo

Slide credit: Emaad Manzoor

Katherine Keith

Causal Estimand: Individual Treatment Effect (ITE)

$$Y^{a=1}$$

 $Y^{a=0}$

Outcome had individual been vaccinated Outcome had individual been given placebo

Individual Treatment Effect (ITE)

$$Y^{a=1} - Y^{a=0}$$

Slide credit: Emaad Manzoor

Katherine Keith

ITEs can not be "identified"

"Cannot be measured from observable data"

$$Y^{a=1} = Y$$
 if vaccinated $\longrightarrow Y^{a=0} = ?$
 $Y^{a=0} = Y$ if placebo $\longrightarrow Y^{a=1} = ?$

 $Y^{a=1}$ and $Y^{a=0}$ not observable simultaneously

Slide credit: Emaad Manzoor

Katherine Keith

Causal Estimand: Average Treatment Effect (ATE)

Changing our estimand to be at the *population* level

N individuals i = 1, ..., N

"Fundamental problem of causal inference" (Holland 1986)

Slide credit: Emaad Manzoor

Causal Estimand: Average Treatment Effect (ATE)

Changing our estimand to be at the population level

$$Y_i^{A_i=1}$$

Outcome had *i* been vaccinated

$$Y_i^{A_i=0}$$

Outcome had *i*
been given placebo

Average Treatment Effect (ATE)

$$\mathbb{E}[Y_i^{A_i=1}] - \mathbb{E}[Y_i^{A_i=0}]$$

Slide credit: Emaad Manzoor

Katherine Keith

Naive estimation approach to ATE

Compare outcomes of vaccine takers to non-vaccine takers

$E[Y_i | A_i = 1] - E[Y_i | A_i = 0]$

Katherine Keith

Naive estimation approach to ATE

Compare outcomes of vaccine takers to non-vaccine takers

$E[Y_i | A_i = 1] - E[Y_i | A_i = 0]$

With confounders, this **does not** equal the ATE

Scope of this talk

Katherine Keith

Lecture Outline and Learning Objectives

1. Causal estimation, in general

- A. What is causal estimation and how does it differ from association and prediction?
- B. What are the challenges with causal estimation with text?

2. Text as causal confounders

A. For observational data, how does one use back-door adjustment for text as a confounder?

3. Text as causal mediators

A. For observational data, how does one estimate the natural direct and indirect causal effects with text as a mediator?

Lecture Outline and Learning Objectives

1. Causal estimation, in general

- A. What is causal estimation and how does it differ from association and prediction?
- B. What are the challenges with causal estimation with text?

2. Text as causal confounders

A. For observational data, how does one use back-door adjustment for text as a confounder?

3. Text as causal mediators

A. For observational data, how does one estimate the natural direct and indirect causal effects with text as a mediator?

Pearl's "Causal Hierarchy"

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association P(ylx)	Seeing	What is? How would seeing <i>X</i> change my belief inY?	What does a symptom tell me about a disease? What does a survey tell us about the election results?

Pearl's "Causal Hierarchy"

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association P(ylx)	Seeing	What is? How would seeing <i>X</i> change my belief inY?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention P(y do(x), z)	Doing, Intervening	What if? What if I do X?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?

Pearl's "Causal Hierarchy"

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association P(ylx)	Seeing	What is? How would seeing <i>X</i> change my belief inY?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention P(y do(x), z)	Doing, Intervening	What if? What if I do X?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals P(y _x x', y')	Imagining, Retrospection	Why? Was it <i>X</i> that caused <i>Y</i> ? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smoking the past two years?

Katherine Keith

Association -> intervention

Gold standard for causal inference: run a **randomized control trial (RCT)** in which treatment is randomly assigned

This random assignment breaks the dependence between confounders and treatment

Causal estimation w/o intervention

We'll need to adjust for the confounders

Differences between prediction vs. causal estimation models

We'll need to adjust for the confounders

Differences between prediction vs. causal estimation models

We'll need to adjust for the confounders

• Causal estimation: we require the assumption of overlap: given a set of confounders, we need to have both treated and untreated individuals (counterfactuals exist = not classes not perfectly separable)

Katherine Keith

Text and Causal Estimation

Y(T=1) and Y(T=0). Need to

model both.

Lecture Outline and Learning Objectives

1. Causal estimation, in general

- A. What is causal estimation and how does it differ from association and prediction?
- B. What are the challenges with causal estimation with text?

2. Text as causal confounders

A. For observational data, how does one use back-door adjustment for text as a confounder?

3. Text as causal mediators

A. For observational data, how does one estimate the natural direct and indirect causal effects with text as a mediator?

Many different theories and formalisms for causal inference

Brady Neal flowchart of causal textbooks: https://www.bradyneal.com/which-causal-inference-book

Katherine Keith

Challenges of causal estimation + text

Causal estimation = hard, currently being developed, "black-boxy"

(particularly w/ machine learning for high dimensional variables)

NLP = hard, currently being developed, "black-boxy"

(particularly representation learning, deep learning)

HARD!

Challenges of causal estimation + text

"A classical causal inference question is how does smoking cause cancer. But with text, it's like we have a picture of a cigarette butt outside a person's house and sometimes we hear them cough and we have to figure out that they smoke from that."

-Aron Culotta

Challenges of causal estimation + text

Lecture Outline and Learning Objectives

1. Causal estimation, in general

- A. What is causal estimation and how does it differ from association and prediction?
- B. What are the challenges with causal estimation with text?

2. Text as causal confounders

A. For observational data, how does one use back-door adjustment for text as a confounder?

3. Text as causal mediators

A. For observational data, how does one estimate the natural direct and indirect causal effects with text as a mediator?

Text and Causal Inference: A Review of Using Text to Remove Confounding from Causal Estimates

Katherine A. Keith, David Jensen, and Brendan O'Connor

ACL 2020

Causal question: For college students, what is the effect of alcohol use on academic success?

(Kiciman et al. Using longitudinal social media analysis to understand the effects of early college alcohol use. ICWSM, 2020)

Katherine Keith

Our contributions for using text to adjust for causal confounding

Katherine Keith

We gather and categorize applications under a common schema

Paper	Treatment	Outcome(s)	Confounder	Text data	Text rep.	Adjustment method
Johansson et al. (2016)	Viewing device (mobile or desktop)	Reader's experience	News content	News	Word counts	Causal-driven rep. learning
De Choudhury et al. (2016)	Word use in mental health community	User transitions to post in suicide community	Previous text written in a forum	Social media (Reddit)	Word counts	Stratified propensity score matching
De Choudhury and Kiciman (2017)	Language of comments	User transitions to post in suicide community	User's previous posts and comments received	Social media (Reddit)	Unigrams and bigrams	Stratified propensity score matching
Falavarjani et al. (2017)	Exercise (Foursquare checkins)	Shift in topical interest on Twitter	Pre-treatment topical interest shift	Social media (Twitter, Foursquare)	Topic models	Matching
Olteanu et al. (2017)	Current word use	Future word use	Past word use	Social media (Twitter)	Top unigrams and bigrams	Stratified propensity score matching
Pham and Shen (2017)	Group vs. individual loan requests	Time until borrowers get funded	Loan description	Microloans (Kiva)	Pre-trained embeddings + neural networks	A-IPTW, TMLE
Kiciman et al. (2018)	Alcohol mentions	College success (e.g. study habits, risky behaviors, emotions)	Previous posts	Social media (Twitter)	Word counts	Stratified propensity score matching
Sridhar et al. (2018)	Exercise	Mood	Mood triggers	Users' text on mood logging apps	Word counts	Propensity score matching
Saha et al. (2019)	Self-reported usage of psychiatric medication	Mood, cognition, depression, anxiety, psychosis, and suicidal ideation	Users' previous posts	Social media (Twitter)	Word counts + lexicons + supervised classifiers	Stratified propensity score matching
Sridhar and Getoor (2019)	Tone of replies	Changes in sentiment	Speaker's political ideology	Debate transcripts	Topic models + lexicons	Regression adjustment, IPTW, A-IPTW
Veitch et al. (2019)	Presence of a theorem	Rate of acceptance	Subject of the article	Scientific articles	BERT	Causal-driven rep. learning + Regression adjustment, TMLE
Roberts et al. (2020)	Perceived gender of author	Number of citations	Content of article	International Relations articles	Topic models + propensity score	Coarsened exact matching
Roberts et al. (2020)	Censorship	Subsequent censorship and posting rate	Content of posts	Social media (Weibo)	Topic models + propensity score	Coarsened exact matching

<u>Scattered</u> <u>publication venues:</u> ICML, IJCAI, ICWSM, CHI, CSCW, AJPS

over 8 different causal adjustment methods

Katherine Keith

Our contributions for using text to adjust for causal confounding

Flow chart of analysts' decisions

Katherine Keith

Our contributions for using text to adjust for causal confounding

Katherine Keith

Adjustment method: matching

1. Define matching criterion: (1) text representation, (2) distance metric, (3) matching algorithm

Example: (1) BERT embeddings, (2) cosine sim. > 0.8, (3) 1-to-many matches

2. Estimate counterfactuals from matches

$$\hat{y}_i(k) = \begin{cases} y_i & \text{if } t_i = k\\ \frac{1}{|\mathcal{M}_i|} \sum_{j \in \mathcal{M}_i} y_j & \text{if } t_i \neq k \end{cases}$$

3. Plug-in matching estimators

$$\hat{\tau}_{\text{match}} = \frac{1}{n} \sum_{i}^{n} \left(\hat{y}_i(1) - \hat{y}_i(0) \right)$$

Adjustment method: outcome regression

1. Fit a supervised model on expected outcomes

$$q(t,z) \equiv \mathbb{E}(Y \mid T = t, Z = z)$$

2. Use the learned outcome to predict counterfactuals

$$\hat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i}^{n} (\hat{q}(1, z_i) - \hat{q}(0, z_i))$$

Adjustment method (newer): causally-driven representation learning

Figure 1: Dragonnet architecture.

Dragonnet: Shi et al. Adapting Neural Networks for the Estimation of Treatment Effects. NeurIPS, 2019. **CausaIBERT:** Veitch et al. Adapting text embeddings for causal inference. UAI, 2020.

Katherine Keith

Our contributions for using text to adjust for causal confounding

Katherine Keith

Text-specific open problems for causal inference

- When does text encode multiple variables simultaneously (e.g. confounders and colliders) and how do we adjust in these settings?
- Since text is high-dimensional, violation of the assumption of overlap, 0<Pr(T |X)<1 for all X, is very likely. When does this occur and what do we do?
- Because text is interpretable, how can one systematically use human judgements to evaluate intermediate causal adjustment steps?

Our contributions for using text to adjust for causal confounding

Open problem: evaluating text-based causal methods

Problem Type	Evaluation
Predictive	Predictive performance (e.g. accuracy) on a held- out test set
Causal	Estimated vs. true causal effects
	Difficult obtain

Open problem: evaluating text-based causal methods

(A) Constructed observational studies

In other social sciences: (LaLonde (1986); Shadish et al. (2008); Glynn and Kashin (2013))

(B) Semi-synthetic datasets

With **text** to remove confounding: (Johansson et al. 2016; Veitch et al. 2019; Roberts et al. 2020)

Katherine Keith

Our contributions for using text to adjust for causal confounding

Katherine Keith

Other resources for text as confounder

Emaad Manzoor's tutorial

Controlling for	Establishing causal relationships is a fundamental	Emaad	Code; Video;
Text in Causal	goal of scientific research. Text plays an	Manzoor	Slides
Inference with	increasingly important role in the study of causal		
Double Machine	relationships across domains especially for		
Learning	observational (non-experimental) data. Specifically,		
	text can serve as a valuable "control" to eliminate		
	the effects of variables that threaten the validity of		
	the causal inference process. But how does one		
	control for text, an unstructured and nebulous		
	quantity? In this tutorial, we will learn about bias		
	from confounding, motivation for using text as a		
	proxy for confounders, apply a "double machine		
	learning" framework that uses text to remove		
	confounding bias, and compare this framework		
	with non-causal text dimensionality reduction		
	alternatives such as topic modeling.		

https://nlp-css-201-tutorials.github.io/nlp-css-201-tutorials/

Katherine Keith

Lecture Outline and Learning Objectives

1. Causal estimation, in general

- A. What is causal estimation and how does it differ from association and prediction?
- B. What are the challenges with causal estimation with text?

2. Text as causal confounders

A. For observational data, how does one use back-door adjustment for text as a confounder?

3. Text as causal mediators

A. For observational data, how does one estimate the natural direct and indirect causal effects with text as a mediator?

Text as Causal Mediators: Research Design for Causal Estimates of Differential Treatment of Social Groups via Language Aspects

Katherine A. Keith, Douglas Rice, and Brendan O'Connor

CI+NLP Workshop, EMNLP 2021

Bias in interruptions during U.S. Supreme Court oral arguments

Q: Why do some justices interrupt female advocates more than male advocates?

(Patton & Smith, "Lawyer, Interrupted: Gender Bias in Oral Arguments at the U.S. Supreme Court," *Journal of Law and Courts*, 2017) (Jacobi and Schweers. "Justice, interrupted: The effect of gender, ideology, and seniority at Supreme Court oral arguments." Va. L. Rev, 2017)

Katherine Keith

Importance of interruptions as causal outcome

- Interruptions => status reinforcement (Mendelberg et al., 2014)
- Justices' oral argument behavior <=> case outcomes (Johnson et al., 2006)
- Timely and relevant

Katherine Keith

Bias in interruptions during U.S. Supreme Court oral arguments

(Patton & Smith, "Lawyer, Interrupted: Gender Bias in Oral Arguments at the U.S. Supreme Court," *Journal of Law and Courts*, 2017) (Jacobi and Schweers. "Justice, interrupted: The effect of gender, ideology, and seniority at Supreme Court oral arguments." Va. L. Rev, 2017)

Katherine Keith

Example

Lozano v. Montoya Alvarez (2013)

Audio Source: Oyez

Well-

Antonin Scalia (justice):

(Photo Credit: Brookings Institute)

Ann O'Connell Adams (advocate):

I mean, it seems to me it just makes that article impossible to apply consistently country to country.

No, I don't think so. And—and, the other signatories have—have almost all, I mean I think the Hong Kong court does say that it doesn't have discretion, but [...] the other courts of signatory countries that have interpreted Article 12 have all found a discretion, whether it be in Article 12 or in Article 8.—

Antonin Scalia (justice):

Have they exercised it? Have they exercised it, that discretion which they say is there?

Katherine Keith

Example

Interruption

Lozano v. Montoya Alvarez (2013)

Well-

(Photo Credit: LinkedIr

Antonin Scalia (justice):

(Photo Credit: Brookings Institute)

Ann O'Connell Adams (advocate):

I mean, it seems to me it just makes that article impossible to apply consistently country to country.

Hedging

Speech Disfluencies

No, I don't think so. And—and, the other signatories have—have almost all, I mean I think the Hong Kong court does say that it doesn't have discretion, but [...] the other courts of signatory countries that have interpreted Article 12 have all found a discretion, whether it be in Article 12 or in Article 8.—

Interruption

Antonin Scalia (justice):

Have they exercised it? Have they exercised it, that discretion which they say is there?

Katherine Keith

Causal DAG, U.S. Supreme Court

Katherine Keith

Causal DAG, General Framework

Katherine Keith

Resumes

Katherine Keith

Katherine Keith

Contributions & past work context

- Intentionally focusing on a thoughtful **causal design** before we obtain empirical results
 - "Design trumps analysis" (Rubin, 2008)
 - We will only every have observational data for the U.S. Supreme Court
- We use causal mediation analysis towards the goal of splitting the total effect into the portion of the effect that goes through language mediators and the portion that does not
 - General causal mediation analysis: (Pearl, 2001; Imai et al., 2010; VanderWeele, 2016)
 - Other text and mediation work: (Tierney & Volfovsky, 2021)
- Illustrate the challenges conceptualizing and operationalizing causal variables
 - Criticisms of claiming "gender" or "race" as a causal treatments (Sen & Wasow, 2016; Hu & Kohler-Hausmann, 2020)
 - Difficult to choose which language aspects to choose as mediators (e.g. Pryzant et al., 2021 with text as treatment)

Causal DAG, U.S. Supreme Court

Katherine Keith

Explanation 1 corresponds to the direct path

Explanation 1 corresponds to the direct path

Natural direct effect (NDE)

How would a justice's interruptions of an advocate change if

- the signal of the advocate's gender the justice received flipped from male to female
- but the advocate still used language typical of a male advocate?

Katherine Keith

Explanation 2 corresponds to paths through mediators

Katherine Keith

Explanation 2 corresponds to paths through mediators

Natural indirect effect (NIE)

How would a justice's interruptions of an advocate change if

- a male advocate
 used language typical
 of a female advocate
- but the signal of the advocate's gender the justice received remained male?

Katherine Keith

Identification

(1) Sequential ignorability $\{Y_i(t',m), M_i(t)\} \perp T_i \mid X_i = x$ $Y_i(t',m) \perp M_i(t) \mid \{T_i = t, X_i = x\}$

(2) Mediator Independence $\forall j, j': M_i^j(t) \perp M_i^{j'}(t) \mid \{T_i = t, X_i = x\}$

Based on Imai et al. 2010 and Pearl et al. 2016

Estimation

Natural direct effect

(e.g. gender->interruption)

SA-NDE^j =

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{x \in \mathcal{X}} \sum_{m \in \mathcal{M}^{j}} \left(\hat{f}^{j}(Y|M_{i}^{j} = m, T_{i} = 1, X_{i} = x) - \hat{f}^{j}(Y|M_{i}^{j} = m, T_{i} = 0, X_{i} = x) \right) \hat{g}^{j}(m|T_{i} = 0, X_{i} = x)$$

Natural indirect effect

(e.g. gender->mediators-> interruption)

$$SA-NIE^{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{x \in \mathcal{X}} \sum_{m \in \mathcal{M}^{j}} \hat{f}^{j}(Y|M_{i}^{j} = m, T_{i} = 0, X_{i} = x)$$
$$\left(\hat{g}^{j}(m|T_{i} = 1, X_{i} = x) - \hat{g}^{j}(m|T_{i} = 0, X_{i} = x)\right)$$

f-function Models the outcome (y) given treatment (t) and confounders (x), and mediators (m)

g-function Models the mediators (g) given treatment (t) and confounders (x)

Based on Imai et al. 2010 and Pearl et al. 2016

Katherine Keith

Limitations of simple assumptions

Gender as a causal "treatment"

Treatment options

- 1. Do judges interrupt at different rates based on an advocate's *gender*?
- 2. Based on an advocate's *biological sex assigned at birth*?
- 3. An advocate's perceived gender?
- 4. An advocate's gender signal?
- 5. An advocate's *gender signal* as defined by (hypothetical) manipulations of the advocate's clothes, hair, name, and voice pitch?
- 6. An advocate's *gender signal* by (hypothetical) manipulations of their entire physical appearance, facial features, name, and voice pitch?
- 7. An advocate's *gender signal* by setting their physical appearance, facial features, name, and voice pitch to specific values (e.g. all facial features set to that of the same 40-year-old, white female and clothes set to a black blazer and pants).

Building from Sen and Wasow (2016); Hu and Kohler-Hausmann (2020)

Katherine Keith

Operationalizing language as a causal mediator

Recommendations

- Hypothetical manipulations
- Causally independent mediators
- Substantive theory
- Measurement error

Katherine Keith

Next steps

- Empirical estimates from real data
- Address causal dependence between temporal utterances
- Analyze between-judge and between-court temporal estimates

Lecture Outline and Learning Objectives

1. Causal estimation, in general

- A. What is causal estimation and how does it differ from association and prediction?
- B. What are the challenges with causal estimation with text?

2. Text as causal confounders

A. For observational data, how does one use back-door adjustment for text as a confounder?

3. Text as causal mediators

A. For observational data, how does one estimate the natural direct and indirect causal effects with text as a mediator?

Thanks! Questions?